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Semiclassical cross section correlations
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We calculate within a semiclassical approximation the autocorrelation function of cross sections. The start-
ing point is the semiclassical expression for the diagonal matrix elements of an operator. For general operators
with a smooth classical limit the autocorrelation function of such matrix elements has two contributions with
relative weights determined by classical dynamics. We show how the random matrix result can be obtained if
the operator approaches a projector onto a single initial state. The expressions are verified in calculations for
the kicked rotor.

PACS number~s!: 05.45.Mt, 31.15.Gy, 24.60.2k
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I. INTRODUCTION

Quantum systems whose classical limit is chaotic sh
fluctuations in cross sections and eigenvalue positions wh
statistical properties seem to fall into a few universal
classes@1–3#. Among the many measures that have be
applied to characterize these statistical features, much a
tion has been given to two-point correlation functions sin
they can under certain assumptions be related to the clas
dynamics@4#. For the case of spectra of bounded syste
this has worked remarkably well and in addition one of t
main predictions of the semiclassical analysis, the existe
of long range correlations due to periodic orbits@4,5#, has
been confirmed many times@1,6#.

More recently investigations of the statistical behavior
directly observable quantities, such as cross sections,
been worked out within the nonlinears model for disordered
systems@7,8#. The correlation function was found to hav
two contributions, a Lorentzian and a derivative of a Lore
zian with respect to its parameter. The ratio between the
terms is fixed and depends on symmetry only. Since ther
no semiclassical expression for the individual wave functio
from which the cross sections could be calculated, the d
vation of such correlation functions within semiclass
poses a serious challenge. A first step in this direction w
undertaken by Agam@9#, who exploited quantum propertie
of the matrix elements and did not use previously establis
formulas for diagonal matrix elements@10,11#. The deriva-
tion presented here is similar in spirit but starts from t
semiclassical expression for diagonal matrix elements
specializes to the case of the cross section in the end
particular, we show how the relative weight between the t
contributions to the correlation function can be changed. T
final expressions are compared with data for cross section
an open kicked rotor model.

In Sec. II we present the semiclassical derivation of
correlation function between cross sections. This calcula
is actually straightforward and closely patterned after cal
lations for other two-point correlations@4#. In Sec. III we
discuss the limit that has to be taken in the observable
arrive at the correlation function for cross sections. In S
IV we discuss numerical simulations for an open kicked
tator. Some concluding comments are given in Sec. V.
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II. SEMICLASSICAL CORRELATION FUNCTIONS FOR
SMOOTH OPERATORS

Quantum cross sections for the transition from an init
stateu i & to a set of final statesun& which are eigenstates of
HamiltonianHun&5Enun& are proportional to

s~E!}(
n

^nuDu i &^ i uDun&d~E2H !, ~1!

where D denotes the dipole operator. Using the projecti
operator

A5Du i &^ i uD ~2!

and Green’s functionG51/(E2H) the cross section be
comes@dropping the proportionality factors implied in Eq
~1!#

sA~E!52
1

p
Im tr~GA!. ~3!

If the operatorA is sufficiently smooth and has a nonsingul
classical limit, there is a semiclassical expression fors(E)
that naturally divides into two pieces@10,11#,

sA
(sc)~E!5s0~E!1sA, f l~E!. ~4!

The first term, a smoothly varying background contributi
from paths of ‘‘zero length,’’ is determined by integratio
over the energy shell of the Wigner transformAW of the
observable with the measuredm5ddpddq/hd ~in d degrees
of freedom!,

s0~E!5E dmAWd~E2H !. ~5!

The second term describes the fluctuations around it an
determined by classical periodic orbits,

sA, f l~E!5
1

p\
Re (

p
ApwpeiSp /\, ~6!

whereSp , Tp , andwp are the action, period, and weight o
the periodic orbitp, respectively, and
7867 ©2000 The American Physical Society
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Ap5E
0

Tp
dtAW„p~ t !,q~ t !… ~7!

is the integral of the observable~again the Wigner transform
of A) over the periodic orbitp. This result is derived unde
the condition that the observable is sufficiently smooth
that it does not affect the stationary phase evaluation
singles out periodic orbits. Wigner transformations of proje
tion operators are critical in this respect since they typica
approachd functions in momenta as\ goes to zero, i.e., they
become rather singular. This is the main limitation that p
vents a direct application of the above expression to the
culation of the autocorrelation function of the cross sectio
We therefore adopt the following strategy: We first calcul
the autocorrelation function forsA(E) within a semiclassica
approximation for a smooth observableA and then discuss
the limit of a singular operator.

The object we want to calculate is the normalized au
correlation function of the fluctuations around the me
cross sections0(E),

C~«!5^sA, f l~E1«/2!sA, f l~E2«/2!&/^s0&
2, ~8!

where ^•••& denotes an average over energy. The ene
scale is set quantum mechanically by the mean spacinD
between neighboring levels, calculated from the mean d
sity of states

r051/D5E dmd~E2H !. ~9!

The associated time scale is the Heisenberg timeTH
52p\r05h/D. The scale for the observable is set by t
phase space average of its Wigner transform,

Ā5

E dmAWd~E2H !

E dmd~E2H !

~10!

so thats05Ār05Ā/D.
Substituting the fluctuating part from the periodic orb

gives

C~«!5
D2

2Ā2p2\2

3ReK (
p,p8

Ap* Ap8wp* wp8e
i [Sp(E1«/2)2Sp8(E2«/2)]/\L .

The classical action in the exponent can be expanded
small «,

Sp~E1«/2!2Sp8~E2«/2!

'Sp~E!2Sp8~E!1«~Tp1Tp8!/2.

In the diagonal approximation@4# the correlation function
becomes
o
at
-
y

-
l-

s.
e

-
n

y

n-

or

Cdiag~«!5
gD2

2Ā2p2\2
Re(

p
uApu2uwpu2eiTp«/\; ~11!

the factorg accounts, as usual, for degeneracies. In the c
of real symmetric Hamiltonians,g52, while for Hermitian
Hamiltoniansg51.

For the next step we use the periodic orbit sum rule@12#
and follow the steps in@13#. The periodic orbits proliferate
exponentially with time so that the sum onp can be replaced
by an integral over time. The density of orbits is given
emT/T with m the topological entropy and their weight b
uwpu25e2lT with l the Lyapunov exponent. The differenc
between the Lyapunov exponent and the topological entr
is the classical escape rate,

G5l2m. ~12!

The integralsAp of the observable along the orbit vary co
siderably among orbits of similar length. The high density
periodic orbits allows us to capture this probabilistica
through the distributionP(A) of values obtained for all or-
bits with periods in a small interval aroundT. If the correla-
tions in the classical dynamics fall off sufficiently rapidly
the distribution will be Gaussian,

P~A!5
1

ApsA

e2(A2Ã)2/sA
2

~13!

with a meanÃ5ĀT following from ergodicity and a vari-
ancesA

25aT that increases linearly with time. With this dis
tribution function and the assumption that there are no c
relations between weightswp and observablesAp , the mean
square average of theAp’s from orbits with periods nearT
changes with time like

^uApu2&~T!5Ā2T21aT. ~14!

Thus, summing the contributions of orbits in the diagon
approximation, we obtain

Cdiag~«!5
gD2

2Ā2p2\2

3ReE
0

TH
dT

e(m2l1 i«/\)T

T
~Ā2T21aT!.

For bounded systems (m5l) and for e50 we obtain the
expression for the variance of matrix elements derived
@13# and tested and verified in many situations@14–16#. If
the system is sufficiently open so thatGTH@1 the contribu-
tions from the off-diagonal terms can be neglected and
integration continued to infinity~as explained in the nex
paragraph!. Then

Cdiag~«!'
gD2

2Ā2p2\2
Re S a

1

G2 i«/\
1Ā2

1

~G2 i«/\!2D .

~15!
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With the energy and time scales mentioned above, i.e«

5 «̃D andG52pG̃/TH5G̃D/\, the correlation function be
comes

C~«!'
g

p S a

Ā2TH

G̃

G̃21 «̃2
1

1

2p

G̃22 «̃2

~ G̃21 «̃2!2D . ~16!

As in the calculation of Fyodorov and Alhassid@7# the cor-
relation function has two terms, a Lorentzian and a deri
tive of a Lorentzian with respect to the width. However,
contrast to their formula, where the relative weight betwe
the two terms was fixed, it here depends on the observ
and the Heisenberg time. This point will be taken up again
the next section.

The above derivation is based on the usual assumpt
on the diagonal approximation, the validity of a periodic o
bit sum rule and the replacement of a sum over orbits by
integral in time. As a consequence deviations can be
pected for short times where isolated periodic orbits do
nate, an effect that should be particularly noticeable n
bifurcations. Deviations from the diagonal approximatio
are strong for the orthogonal ensemble and absent for
unitary ensemble, at least up to the Heisenberg time@17#.
The extension of the time integration up to infinity rath
than the Heisenberg time is justified if the system is v
open, i.e., if GTH@1, so that the corrections due to of
diagonal terms for times beyond the Heisenberg time can
neglected. When approaching bounded systemsG vanishes
and the corrections have to be taken into account. The fi
expression is thus reasonable only for sufficiently open s
tems whereG/\@D. In this limit the contributions from
long orbits are quickly suppressed and the differences
tween the unitary and orthogonal ensembles should di
pear, except of course for the factor of 2. It is possible to
beyond this by assuming that the form factor is the rand
matrix form factor times an exponential damping, as s
gested also by Alhassid and Fyodorov@8,18#.

The derivative of the Lorentzian in the second ter
weighted by the mean of the operator, can be traced bac
the autocorrelation function of the density of states~without
operator! as calculated earlier@19#. The widthG that enters
here is the classical escape rate, since that is what determ
the modification of the classical sum rule. The predicti
then is that the quantum resonances have half that wi
since it is the probabilities and not the amplitudes that h
to follow the classical behavior. In many cases, especi
with a finite number of channels, the situation presumabl
more complex, since the quantum resonances have a d
bution of widths and it is not clear which quantity~average
width, maximum of distribution, longest lifetime, etc.! domi-
nates the form factor@20#. In the semiclassical limit of an
infinite number of channels some information can be dra
from the results of Fyodorov and Sommers for random m
trix models with fixed transmission@21# and from the distri-
bution of resonance widths calculated by Haakeet al. @22#:
in both cases a single width parameter, given by half
classical escape rate in the first case and by half the ga
the distribution in the second case, suffices to describe
correlation function.
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Finally, we note that if the classical correlations do n
decay sufficiently rapidly the average of the square of
integrals along the orbits can be expressed as an integral
the correlation function as in the previous calculation of m
trix elements@13#.

III. THE LIMIT OF PROJECTION OPERATORS

The final result for the correlation function given in E
~16! has the two functional dependencies also identified
Alhassid and Fyodorov@7#, but the relative weighting de
pends on the observable. Even worse, the first term cont
TH in the denominator and therefore seems to vanish in
semiclassical limit whereTH diverges. Then the correlatio
function is of the form of a derivative of the Lorentzian onl
So how can one obtain Alhassid and Fyodorov’s res
a/Ā2TH51 within this semiclassical approach?

The key to the problem is the observation that the se
classical approximation assumes the observable to ha
nonsingular classical limit whereas the quantum cross s
tions are obtained from observables that are projectors on
initial state~weighted with the dipole operator!. The Wigner
transform of a projector is itself a function of Planck’s co
stant and becomes singular in the semiclassical limit. M
specifically, one can visualize the Wigner transform of a p
jector as a characteristic function that ind dimensions exists
on a phase space cell of volumehd, since that is the phas
space volume occupied by a single state. The observable
which the semiclassical trace formula was derived w
smooth with a nonsingular limit, that is to say, they cover
an increasing number of quantum states in the semiclas
limit. This smearing over many states suppresses the
term in the correlation function.

It is possible to estimate the consequences of this ob
vation on the operatorA in a simple model of a uniformly
damped quantum map. Consider a two-dimensional cha
map on a finite phase space and its quantum represent
by an N3N unitary operatorU. The dimensionN of U,
Planck’s constanth, and the volumeV0 of the classical
phase space are connected byh5V0 /N. Damping is intro-
duced uniformly everywhere in phase space and on all qu
tum states. The projector is modeled by an observable
takes on the valuea0 in some part of phase space of areaVA
and vanishes everywhere else.

On the classical side the integrals of the observable al
the periodic orbit are replaced by sums over the points of
orbit. If there are no correlations between different tim
steps, the average value of theAp over all orbits with period
n is given by ^Ap&5na0p, wherep5VA /V0 is the prob-
ability for a randomly chosen point to lie in the phase spa
area where the observable does not vanish. The second
ment of the distribution is given by

^Ap
2&5a0

2p2n21a0
2p~12p!n. ~17!

By comparison with Eq.~14! we read off Ā5a0p and a
5a0

2p(12p). The Heisenberg time isTH5N, the dimen-
sion of the Hilbert space. Therefore,
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a

Ā2TH

5
a0

2p~12p!

a0
2p2N

5
12p

pN
. ~18!

With an escape rateG̃ expressed in units of the Heisenbe
time the correlation function then becomes

C~«!5
g

p S 12p

pN

G̃

G̃21«2
1

1

2p

G̃22«2

~ G̃21«2!2D . ~19!

This expression clearly shows the suppression of the
term in the semiclassical limit of largeN if p is fixed.

However, if the observable is a projector onto a sin
state its Wigner transform should localize on a cell of ph
space volumeh. Thus,VA5V0 /N and p51/N, so that the
product pN51. Except for the tiny correction 1/N to the
correct ratio of 1 this is the result obtained by Alhassid a
Fyodorov @7#. In addition, it suggests a way to modify th
relative weighting between the two terms: consider tran
tions not from a single state but fromM states in an incoher
ent superposition, i.e.,

A5D(
m

um&^muD. ~20!

Then the phase space area covered byA will increaseM-fold
and the weight of the Lorentzian will decrease correspo
ingly,

C~«!'
g

p S 1

M

G̃

G̃21«2
1

1

2p

G̃22«2

~ G̃21«2!2D ~21!

~where it is assumed thatM!N). The resolution to the prob
lem of the relative weight between the two terms in the c
relation function posed at the beginning of this section
thus that, by focusing on initial states that are projectors,
classical observable also depends on\, and this\ depen-
dence influences the classical quantities as well. Indee
the classical observable becomes very localized in ph
space, it is rarely visited, the return time becomes large,
the variance increases much more slowly, on a time s
also set by the return time. In this way the Heisenberg ti
enters the classical quantities.

IV. NUMERICAL TESTS ON THE KICKED ROTOR

The model of the previous section clearly stretches
applicability of the semiclassical expressions for the ma
elements to their limits and requires numerical tests. We
the kicked rotor in the momentum space quantization
Izrailev @23# for this purpose,

Unm5
1

N (
l 50

N21

e2 iKNV(2p l /N)e22ip l (n2m)/Ne2 i2pm2/N,

~22!

where @18# V(f)5cosf2sin(2f) is the kicking potential.
This model is known to belong to the unitary universal
class (g51) due to the second term in the potential th
breaks the conjugation symmetry@24,25#. If the kicking
strength is sufficiently large the correlations decay v
st
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quickly and one ends up with essentially random values
the momenta. The calculations were done forK57 @26# and
matrix sizesN5101, 201, 401, 801, and 1601. The initi
states were taken to be momentum eigenstates of the un
turbed map. From the eigenstatesun& and eigenphasesfn a
cross section was formed with the operatorA from Eq. ~20!
according to

s~f!5Re(
n

^nuAun&
12exp@ i ~f2fn!2G/2#

. ~23!

The dampingG/2 is uniform for all eigenstates and mode
the coupling of the system to a continuum~for a discussion
of this point see the previous section and the references c
there!. The role of the energy is now taken over by the pha
f and the mean and correlation function are calculated o
the periodicity interval 2p. The mean separation betwee
eigenphases isD52p/N. Figure 1 shows the correlatio
function obtained for different numbers of initial states a
constant damping. For a single initial state the contribut
from the derivative of a Lorentzian is barely noticeable, b
as the number of initial states increases the deviations f
the Lorentzian become larger. In particular, the correlat

FIG. 2. Ratio between variance and average squared for obs
ables of different widths. The different symbols correspond to d
ferent sizes of the matrix and thus to different values of\.

FIG. 1. Cross section correlation function for different widths
the observable, increasing fromM51 ~top curve! to 3, 10, and 50
~bottom curve!. The width of the resonances was uniform throug
out the quantum spectrum:G5D @see Eq.~23!#. The continuous

curves are fits to the functional form of Eq.~16! with G̃ and the
coefficient of the Lorentzian as fitting parameters with the condit
C(0)51.
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function develops a zero forM /2p.G̃. Fitting Eq.~16! with
the coefficient of the Lorentzian andG̃ as free parameter
yields a broadeningG̃'G independent ofM and the coeffi-
cient of the Lorentzian in Eq.~16! is proportional toM 21 as
expected from Eq.~21!.

A random matrix calculation@25# shows that the quantity
that controls the relative weight between the two terms is
ratio between the variancesA

2 of the matrix elements and th
square of the average for different matrix sizes. This qu
tity, (sA /^A&)2 should equal (12p)/pN. As shown in Fig.
2, the renormalized quantity (sA /^A&)2pN follows the ex-
pected 12p behavior rather closely, albeit with large fluc
tuations. It thus seems that the assumptions that enter in
semiclassical derivation of the correlation function can
satisfied in chaotic systems.

V. FINAL REMARKS

We have shown how within a semiclassical approxim
tion correlation functions for cross sections in open syste
can be calculated. The calculations could be supported
simulations in the standard map and in particular the chan
in the relative weight between the two contributions to t
correlation function could be demonstrated.

Actually, the calculation works much better than can re
sonably be expected: it is well known that the calculation
wave functions usually requires in addition to periodic orb
o-

.
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f

also recurrent orbits@27,28#. Their importance depends o
the width of the initial state@11#. It may happen, however
that in a statistical sense the differences between the co
butions from recurrent and periodic orbits cancel. A rela
problem concerns the higher moments of the distribution
thus the form of the full distribution. Even in the singula
limit of small p considered in the model, the distribution o
classical contributions remains Gaussian, or perhaps Po
nian @25#, but the distribution for transition strengths e
pected from random matrix theory is exponential~for the
unitary ensemble! or Porter-Thomas~for the orthogonal en-
semble!. Further calculations indeed show that, while t
first and second moments agree, the higher moments an
full distributions differ @25#.

Among the consequences that seem worthwhile to pur
are the dependence on the initial state and the possibilit
highlighting the non-Lorenzian part, the modification to a
low for nonexponential classical escape@18,25#, and the sin-
gular contributions from periodic orbits near bifurcatio
@29#.
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@24# R. Blümel and U. Smilansky, Phys. Rev. Lett.69, 217 ~1992!.
@25# B. Eckhardt, I. Varga, and P. Pollner, Prog. Theor. Ph

Suppl.139, 59 ~2000!.
@26# G. Casati, G. Maspero, and D. L. Shepelyansky, Phys. R

Lett. 82, 524 ~1999!.
@27# E. B. Bogomolny, Physica D31, 169 ~1988!.
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