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Semiclassical cross section correlations
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We calculate within a semiclassical approximation the autocorrelation function of cross sections. The start-
ing point is the semiclassical expression for the diagonal matrix elements of an operator. For general operators
with a smooth classical limit the autocorrelation function of such matrix elements has two contributions with
relative weights determined by classical dynamics. We show how the random matrix result can be obtained if
the operator approaches a projector onto a single initial state. The expressions are verified in calculations for
the kicked rotor.

PACS numbgs): 05.45.Mt, 31.15.Gy, 24.68.k

I. INTRODUCTION Il. SEMICLASSICAL CORRELATION FUNCTIONS FOR
SMOOTH OPERATORS

Quantum_systems wh_ose cIaSS{caI limit is ch.a.ot|c show Quantum cross sections for the transition from an initial
fluct.uqnons In Cross sections and elgenvalue posmpns Whosﬁatem to a set of final statef) which are eigenstates of a
statistical properties seem to fall into a few u”'Versal'tyHamiltonianH|n>:En|n> are proportional to
classeg1-3]. Among the many measures that have been
applied to characterize these statistical features, much atten- o
tion has been given to two-point correlation functions since a(E) 2 (n|D|i)(i[D[n)S(E—H), D
they can under certain assumptions be related to the classical i
dynamics[4]. For the case of spectra of bounded systemsyhere D denotes the dipole operator. Using the projection
this has worked remarkably well and in addition one of thegperator
main predictions of the semiclassical analysis, the existence
of long range correlations due to periodic orlits5], has A=D|i)(i|D 2
been confirmed many timg4,6]. ] )

More recently investigations of the statistical behavior ofand Green’s functiorG=1/(E—H) the cross section be-
directly observable quantities, such as cross sections, haf@mes[dropping the proportionality factors implied in Eqg.
been worked out within the nonlinearmodel for disordered
systems[7,8]. The correlation function was found to have 1
two co_ntrlbutlons, a Lorentzian and a der|yat|ve of a Lorent- oa(E)=——1Im tr(GA). (3)
zian with respect to its parameter. The ratio between the two ™
terms IS f'Xed. and depengis on sym.mef[ry only. Since the_re '# the operatofA is sufficiently smooth and has a nonsingular
no semiclassical expression for the individual wave functlonsclassical limit, there is a semiclassical expressiond¢E)
from which the cross sections could be calculated, the deri-h t naturall 'd' ides into two piecd40 1 P
vation of such correlation functions within semiclassicst at naturally divides into two piec¢0,11],
poses a serious challenge. A first step in this direction was (SO —
undertaken by AgamQ], who exploited quantum properties oa"(B)=0o(B)+ oan(E). @

of the matrix elements and did not use previously establishegthe first term, a smoothly varying background contribution
formulas for diagonal matrix elemenfs0,11. The deriva-  from paths of “zero length,” is determined by integration
tion presented here is similar in spirit but starts from thegyer the energy shell of the Wigner transfory, of the

semiclassical expression for diagonal matrix elements angpservable with the measuda.=d%pd?q/h® (in d degrees
specializes to the case of the cross section in the end. I§f freedom,

particular, we show how the relative weight between the two
contributions to the correlation function can be changed. The
final expressions are compared with data for cross sections in oo(E)= f duAwS(E—H). ®)
an open kicked rotor model.

In Sec. Il we present the semiclassical derivation of theThe second term describes the fluctuations around it and is
correlation function between cross sections. This calculationletermined by classical periodic orbits,
is actually straightforward and closely patterned after calcu-
lations for other two-point correlationg!]. In Sec. Il we
discuss the limit that has to be taken in the observable to
arrive at the correlation function for cross sections. In Sec.
IV we discuss numerical simulations for an open kicked ro-whereS,, T,, andw, are the action, period, and weight of
tator. Some concluding comments are given in Sec. V. the periodic orbitp, respectively, and

1 .
oan(E)=—Re % Apwye'Se !, (6)
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2

;
Ap= fo "dtAw(p(t).q(t)) (@) Carngle) = ZK%;A%Z

ReY, |A,2|w,|2eTee/;  (12)
b
is the integral of the observablagain the Wigner transform  yhe factorg accounts, as usual, for degeneracies. In the case
of A) over the periodic orbip. This result is derived under ¢ o3| symmetric Hamiltoniangy=2, while for Hermitian
the condition that the observable is sufficiently smooth SHamiltoniansg=1.

that it does not affect the stationary phase evaluation that 4 the next step we use the periodic orbit sum fatz]

singles out periodic orbits. Wigner transformations of projec-, .4 follow the steps ifi13]. The periodic orbits proliferate

tion operators are critical in this respect since they typica”yexponentially with time so that the sum prean be replaced

approachy functions in momenta & goes to zero, i.e., they "4 integral over time. The density of orbits is given by

become rather singular. This is the main limitation that pre-u7/1 \with 1 the topological entropy and their weight by

vents a direct application of the above expression to the ca\—w 12=e AT with X the Lyapunov exponent. The difference
culation of the autocorrelation function of the cross sectionsbe’%ween the Lyapunov exponent and the topological entropy
We therefore adopt the following strategy: We first calculateiq ihe classical escape rate

the autocorrelation function far,(E) within a semiclassical
approximation for a smooth observabdand then discuss T=\—u (12)
the limit of a singular operator. '

Th ject we wan lcul is the normaliz - . .
e object we want to calculate is the normalized au'[OThe integralsA,, of the observable along the orbit vary con-

correlatlon- function of the fluctuations around the meansiderably among orbits of similar length. The high density of
cross sectionry(E), S . . o

periodic orbits allows us to capture this probabilistically
through the distributiorP(A) of values obtained for all or-
bits with periods in a small interval arourd If the correla-
tions in the classical dynamics fall off sufficiently rapidly,
Yhe distribution will be Gaussian,

C(e)=(oan(E+el2)opn(E—el2)){op)? (8

where (- --) denotes an average over energy. The energ
scale is set quantum mechanically by the mean spading
between neighboring levels, calculated from the mean den-

sity of states P(A)=

e—(A—Z\)Z/s,i (13)
’7TSA
pO=1/A=f dus(E—H). 9 S
with a meanA=AT following from ergodicity and a vari-
ancesa=aT that increases linearly with time. With this dis-
tribution function and the assumption that there are no cor-
relations between weights, and observabled,,, the mean
square average of they's from orbits with periods neaf
changes with time like

The associated time scale is the Heisenberg time
=2mhpo=h/A. The scale for the observable is set by the
phase space average of its Wigner transform,

B fdMAWaE—H) B
A= (10) (|ALIPN(T)=A’T?+aT. (14)

fdM&E—H)

Thus, summing the contributions of orbits in the diagonal
- approximation, we obtain
so thatog=Apg=A/A.

Substituting the fluctuating part from the periodic orbits gA2
gives Coadl®) = SRz a2
A2 T, elrNHiEm)T
C(«9)=—2K2772h2 xRefOHde(AZT%aT).

><Re< > A;Ap,w’,;wp,e‘[SP(E+5’2)‘Sp’(E‘S’2)]’ﬁ>. For bounded systemsu=\) and for e=0 we obtain the
p.p’ expression for the variance of matrix elements derived in
[13] and tested and verified in many situatidigt—16. If
The classical action in the exponent can be expanded fahe system is sufficiently open so tHaT > 1 the contribu-
small e, tions from the off-diagonal terms can be neglected and the
integration continued to infinitfas explained in the next
Sy(E+el2)— S, (E—el2) paragraph Then
~Sy(E) =Sy (E)+&(Tp+Tp)/2. gA? 1 B 1
. . . . . Cdiag(s)w——Re a=_ +A? . .
In the diagonal approximatiof4] the correlation function 2A%72Hh? I'—ielf (T'—ielh)?
becomes (15
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With the energy and time scales mentioned above, é.e., Finally, we note that if the classical correlations do not
=%zA andl'=2#1/T,=TA/#, the correlation function be- decay sufficiently rapidly the average of the square of the
comes integrals along the orbits can be expressed as an integral over

the correlation function as in the previous calculation of ma-
trix elementg13].
g a r 1 T2-%2

T\ ®r, T 27 (a0

| o
lll. THE LIMIT OF PROJECTION OPERATORS

. . The final result for the correlation function given in Eq.
As in the calculation of Fyodorov and Alhassid] the cor-  (16) has the two functional dependencies also identified by
relation function has two terms, a Lorentzian and a derivaa nassid and Fyodoroy7], but the relative weighting de-
tive of a Lorentzian with respect to the width. However, in honqs on the observable. Even worse, the first term contains
contrast to their formula, where the relative weight betwee ., in the denominator and therefore seems to vanish in the
the tvr\1/o terms was f|?<ed, |thhere depe_nds onkthe Obseryap@emiclassical limit wher&  diverges. Then the correlation
and the Heisenberg time. This point will be taken up again itynction is of the form of a derivative of the Lorentzian only.

the next section. o . So how can one obtain Alhassid and Fyodorov’'s result
The above derivation is based on the usual assumptions

. S . - A2T. =1 within thi ' ' 2
on the diagonal approximation, the validity of a periodic or- a/'?\l'hTHk 1 ;N'ttmn thlsteml_cIa}[ismalla apprti.achih tth .
bit sum rule and the replacement of a sum over orbits by an € Key lo the problem 1S the observation that the semi-
integral in time. As a consequence deviations can be exglass_lcal approximation assumes the observable to have a
pected for short times where isolated periodic orbits domi_non3|ngular c_IassmaI limit whereas the quantum Ccross sec-
ons are obtained from observables that are projectors on the

nate, an effect that should be particularly noticeable neal . ) . . .
bifurcations. Deviations from the diagonal approximationsInltlal state(welghted W'th the dipole opgrat)or‘l’he W'Q”er
téansform of a projector is itself a function of Planck’s con-

are strong for the orthogonal ensemble and absent for th

unitary ensemble, at least up to the Heisenberg fitrig. stant z_ind becomes S|_ngulz_1r in the _semlclasswal limit. More
specifically, one can visualize the Wigner transform of a pro-

The extension of the time integration up to infinity rather; ' h teristic function thatdrdi . ist
than the Heisenberg time is justified if the system is ver))ec or as a characteristic tunction thatdraimensions exists

open, i.e., if[Ty>1, so that the corrections due to off- on a phase space cell of volurhé, since that is the phase

diagonal terms for times beyond the Heisenberg time can b%‘;?cﬁ \;ﬁlume O.C(iUp'?d ?yta smg:cle stalte. The %bs_ervg\bles for
neglected. When approaching bounded syst€Emanishes whic e semiclassical fraceé formula was derived were

and the corrections have to be taken into account. The finaﬁm(.mth Wit.h a nonsingular limit, that is to Say, they qovergd
an increasing number of quantum states in the semiclassical

expression is thus reasonable only for sufficiently open sysl—irnit This smearing over manv states suppresses the first
tems wherel'/A>A. In this limit the contributions from S 9 nany PP
term in the correlation function.

long orbits are quickly suppressed and the differences be- It is possible to estimate the consequences of this obser-

tween the unitary and orthogonal ensembles should disap-

pear, except of course for the factor of 2. It is possible to govatlon on the operatoh in a simple model of a uniformly

beyond this by assuming that the form factor is the randorr?n"’:ampoer:j ;l;iiﬂgjmhgiepécgcf'gﬁé Eiitsthfrzgjﬂigmraelsgﬁ;[tifn
matrix form factor times an exponential damping, P P P q P

as sug- . ) .
gested also by Alhassid and Fyodor{@;18]. E’)I/ ank!\lx N utmtat:y op;r;ar:oru. IThee((ZJilmefnfrgoan of U |
The derivative of the Lorentzian in the second term, anck's constanh, an € VOlumei, of In€ classica

weighted by the mean of the operator, can be traced back nase space are connectedfby {o/N. Damping is intro-

the autocorrelation function of the density of stafegthout uced uniformly everywhere in phase space and on all quan-
operatoy as calculated earlidl9]. The widthI" that enters tm states. The pro_jector is modeled by an observable that
té'aé(es on the valua, in some part of phase space of afeg

here is the classical escape rate, since that is what determin d ish h |
the modification of the classical sum rule. The predictionan vanisnes everywnere eise.
On the classical side the integrals of the observable along

then is that the quantum resonances have half that widt A iodic orbit laced b th ints of th
since it is the probabilities and not the amplitudes that hav € periodic orbit ar€ replaced by sums over the points ot the
rbit. If there are no correlations between different time

to follow the classical behavior. In many cases, especiall)pt th | £ 1A | orbits with period
with a finite number of channels, the situation presumably i€Ps, (n€ average value of Ing over all orbits with perio

more complex, since the quantum resonances have a distﬁ-i_s_ given by(Ap)=nagp, Where_p=QA/(_)0 is the prob-
bution of widths and it is not clear which quantitgverage 2Pility for a randomly chosen point to lie in the phase space
width, maximum of distribution, longest lifetime, exclomi- area where the observable does not vanish. The second mo-

nates the form factof20]. In the semiclassical limit of an ment of the distribution is given by
infinite number of channels some information can be drawn
from the results of Fyodorov and Sommers for random ma-
trix models with fixed transmissiof21] and from the distri-
bution of resonance widths calculated by Haakel. [22]:

in both cases a single width parameter, given by half the _
classical escape rate in the first case and by half the gap By comparison with Eq(14) we read offA=ayp and «
the distribution in the second case, suffices to describe the agp(l—p). The Heisenberg time i$,=N, the dimen-
correlation function. sion of the Hilbert space. Therefore,

(A3)y=agp®n?+ajp(1—p)n. (17)
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« agp(l-p) 1-p . ' TS
= = > 2N = N (18) 0.8 | B x M= 3 |
ATy aop p - = M=10
06 = M=50
With an escape ratE expressed in units of the Heisenberg s
time the correlation function then becomes % 04 |
5%
g(i-p T 1 T2-¢2 Rl B N
C(S) - 2 A~ 2 20" (19) Ehx“ E‘MX%)‘%*;: x*;zxm;;ﬁ;ﬂ*¢§”‘h
pN F +8 27T (F +e ) 0r DDE:*;W,.**EEE;;E;*xsumggsgggg;%ﬁ%’;:g
This _expression_ clearly shoyvs the su_ppre_ss!on of the first '0‘20 1 2 3 4'{ 5
term in the semiclassical limit of largd if p is fixed. /A

However, if the observable is a projector onto a single
state its Wigner transform should localize on a cell of phase FIG. 1. Cross section correlation function for different widths of
space volumé. Thus,Q,=Q,/N andp=1/N, so that the the observable, increasing frokt=1 (top curve to 3, 10, and 50
product pN=1. Except for the tiny correction W to the (bottom curve. The width of the resonances was uniform through-
correct ratio of 1 this is the result obtained by Alhassid andPut the quantum spectrunii=A [see Eq.(23)]. The continuous
Fyodorov[7]. In addition, it suggests a way to modify the curves are fits to the functional form of E(LE) with T and the
relative weighting between the two terms: consider transicoefficient of the Lorentzian as fitting parameters with the condition
tions not from a single state but froM states in an incoher- C(0)=1.
ent superposition, i.e.,
quickly and one ends up with essentially random values for
_ 2 the momenta. The calculations were doneKer 7 [26] and
A=D = [m)(m[D. 20 matrix sizesN=101, 201, 401, 801, and 1601. The initial
states were taken to be momentum eigenstates of the unper-
Then the phase space area covered\will increaseM-fold ~ turbed map. From the eigenstate$ and eigenphases, a
and the weight of the Lorentzian will decrease correspondcross section was formed with the operatofrom Eqg. (20)
ingly, according to

(vlAlv)
l-exdi(¢p—a,)—T12]"

g1 T 1 T?-
M T2y 52 277' (T?+¢?)?

(23

Cle)~ (21) o(¢)= ReZ

(where it is assumed th&d <N). The resolution to the prob- The dampingl’/2 is uniform for all eigenstates and models
lem of the relative weight between the two terms in the corthe coupling of the system to a continuyfor a discussion
relation function posed at the beginning of this section isof this point see the previous section and the references cited
thus that, by focusing on initial states that are projectors, théhere. The role of the energy is now taken over by the phase
classical observable also depends7gnand this# depen- ¢ and the mean and correlation function are calculated over
dence influences the classical quantities as well. Indeed, the periodicity interval zr. The mean separation between
the classical observable becomes very localized in phassigenphases ia=2#/N. Figure 1 shows the correlation
space, it is rarely visited, the return time becomes large, anflinction obtained for different numbers of initial states and
the variance increases much more slowly, on a time scaleonstant damping. For a single initial state the contribution
also set by the return time. In this way the Heisenberg timdrom the derivative of a Lorentzian is barely noticeable, but
enters the classical quantities. as the number of initial states increases the deviations from
the Lorentzian become larger. In particular, the correlation

IV. NUMERICAL TESTS ON THE KICKED ROTOR
1

The model of the previous section clearly stretches the :’;‘g‘ggi_\ ;8] ‘
applicability of the semiclassical expressions for the matrix 0.8 | X§E§3§‘_ 401 =
elements to their limits and requires numerical tests. We use > ‘gﬁ'gg\\ 128] °
the kicked rotor in the momentum space quantization of o 06} *Q%ggg;;‘.,

Izrailev [23] for this purpose, % gg;':-,;?g;cw.
x 047 T
1N & g
nm:N E |KNV(2W|/N)e—2iw|(n—m)/Ne—izwm2/N’ o2 | "-,,!!2E
=0 Ry
(22) . , ",
0 0.2 0.4 0.6 0.8 1

where[18] V(¢)=cos¢—sin(2¢) is the kicking potential.
This model is known to belong to the unitary universality
class g=1) due to the second term in the potential that FIG. 2. Ratio between variance and average squared for observ-
breaks the conjugation symmetf4,25. If the kicking ables of different widths. The different symbols correspond to dif-
strength is sufficiently large the correlations decay veryferent sizes of the matrix and thus to different values of
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function develops a zero fdv/27>T . Fitting Eq.(16) with
the coefficient of the Lorentzian anid as free parameters

yields a broadening’'~I" independent oM and the coeffi-
cient of the Lorentzian in Eq16) is proportional toM ~* as
expected from Eq(21).

A random matrix calculatiof25] shows that the quantity
that controls the relative weight between the two terms is th
ratio between the varianag of the matrix elements and the
square of the average for different matrix sizes. This quan
tity, (sa/(A))? should equal (+ p)/pN. As shown in Fig.

2, the renormalized quantitys{/(A))?pN follows the ex-
pected p behavior rather closely, albeit with large fluc-
tuations. It thus seems that the assumptions that enter in o

ECTION CORRELATIONS 7871

also recurrent orbit$27,28. Their importance depends on
the width of the initial stat¢11]. It may happen, however,
that in a statistical sense the differences between the contri-
butions from recurrent and periodic orbits cancel. A related
problem concerns the higher moments of the distribution and
thus the form of the full distribution. Even in the singular

limit of small p considered in the model, the distribution of

@lassical contributions remains Gaussian, or perhaps Poisso-

nian [25], but the distribution for transition strengths ex-
pected from random matrix theory is exponentidr the
unitary ensembleor Porter-Thomagfor the orthogonal en-
semblg. Further calculations indeed show that, while the
first and second moments agree, the higher moments and the
#ill distributions differ[25].

satisfied in chaotic systems.

V. FINAL REMARKS

We have shown how within a semiclassical approxima
tion correlation functions for cross sections in open system
can be calculated. The calculations could be supported wit

are the dependence on the initial state and the possibility of
highlighting the non-Lorenzian part, the modification to al-
low for nonexponential classical escd{ds,25, and the sin-
gular contributions from periodic orbits near bifurcations

[29]
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